
Structured Apprenticeship Learning

Abdeslam Boularias1, Oliver Krömer2, and Jan Peters1,2

1 Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
2 Darmstadt University of Technology, 64289 Darmstadt, Germany

Abstract. We propose a graph-based algorithm for apprenticeship learn-
ing when the reward features are noisy. Previous apprenticeship learning
techniques learn a reward function by using only local state features. This
can be a limitation in practice, as often some features are misspecified or
subject to measurement noise. Our graphical framework, inspired from
the work on Markov Random Fields, allows to alleviate this problem
by propagating information between states, and rewarding policies that
choose similar actions in adjacent states. We demonstrate the advantage
of the proposed approach on grid-world navigation problems, and on the
problem of teaching a robot to grasp novel objects in simulation.

1 Introduction

Programming robots to perform complicated tasks, such as grasping and manip-
ulating objects, is a laborious and time-intensive engineering process. Markov
Decision Processes (MDPs) provide an efficient mathematical tool to handle such
tasks with minimum human effort. In this framework, the task is simply defined
by a reward function. However, in many problems, even the specification of a
reward function is not always straightforward. An alternative approach consists
of demonstrating examples of a desired behavior and learning a policy that leads
to a similar behavior. This type of learning is known as imitation learning and
has been widely explored in robotics [1].

Abbeel and Ng [2] introduced a new paradigm of imitation learning known
as apprenticeship learning. Rather than directly mimicking the actions of the
human, the aim of apprenticeship learning is to recover a reward function under
which the human policy is optimal. The learned reward function is then used to
find an optimal policy. The process of recovering a reward function is known as
Inverse Reinforcement Learning (IRL).

Prior work on apprenticeship learning is based on representing the rewards
as a function of state-action features [3–8]. However, this can be a problem
in practice when the reward features are noisy or misspecified. Therefore, the
features specified by a user are not always sufficient for describing a reward
function and for choosing actions accordingly.

An example problem would be planning to grasp an unknown object using
visual information. The calculated features are often subject to noise due to mea-
surement errors and self-occlusions. It is also difficult to encode the preference

for grasping an object from a specific part, such as a handle, given that these
parts come in different shapes.

A similar problem in computer vision, known as segmentation, has been
efficiently solved using a family of graphical models known as Markov Random
Fields (MRFs) [9–12]. The key insight behind the performance of Markov fields
is that neighbor points on an image tend to have similar labels. Therefore, even a
small set of noisy features can be sufficient for classifying a point when considered
together with its neighbors. However, Markov fields classify the points by using
only immediate costs (or rewards) and cannot be used for learning complex
goal-directed behaviors, such as manipulating objects.

In this paper, we build on this insight and introduce a new apprenticeship
learning technique that extends Markov Random Fields to sequential decision-
making problems. We start by specifying a graph that loosely indicates which
pairs of states are supposed to have similar optimal actions. Subsequently, we de-
rive a distribution on policies, wherein the probability of a policy is proportional
to its value, and inversely proportional to the number of pairs of adjacent states
that have different actions. Consequently, policies are penalized for selecting ac-
tions that are inconsistent with the graph. We show that this distribution is an
MRF, and describe a dynamic programming procedure that reduces planning in
MDPs with MRFs to a sequence of inference problems in MRFs.

The experimental analysis, presented at the end of this paper, shows that this
approach can improve the performance of an apprenticeship learning algorithm
when the reward features are noisy or misspecified. Specifically, we compare the
proposed algorithm to the MaxEnt IRL algorithm [7] on grid-worlds with long
planning horizons. We also compare to our previous work on learning to grasp
new objects [13]. In [13], the grasping points on an object are classified using
an MRF, while the preshaping and the approach direction of the robot hand
are given by a heuristic. In this paper, we show how to learn complete grasping
policies by using structured apprenticeship learning.

2 Background

In this section, we provide the theoretical background that is necessary for un-
derstanding the remainder of this paper.

2.1 Markov Decision Processes

Formally, a Markov Decision Process (MDP) is a tuple (S,A, T,R, µ0, γ), where
S is a set of states and A is a set of actions. T is a transition function with
T (s, a, s′) = P (st+1 = s′|st = s, at = a) for s, s′ ∈ S, a ∈ A, and R is a reward
function where R(s, a) is the reward given for executing action a in state s. The
initial state distribution is denoted by µ0, and γ ∈ [0, 1] is a discount factor. A
Markov Decision Process without a reward function is denoted by MDP\R. We
assume that the reward function is a linear combination of K feature vectors φk

with weights θk,

∀(s, a) ∈ S ×A : R(s, a) =

K∑
k=1

θkφk(s, a).

A deterministic policy π is a function that returns an action a = π(s) for each
state s. The expected return J(π) of a policy π is the expected sum of rewards
that will be received when following policy π, i.e.

J(π) = E[

∞∑
t=0

γtR(st, at)|µ0, π, T].

An optimal policy π∗ is one satisfying π∗ ∈ arg maxπ J(π). The expectation of
a feature φk for a policy π is defined as

φπk = E[

∞∑
t=0

γtφk(st, at)|µ0, π, T].

Using this definition, the expected return of a policy π can be written as a linear
function of the feature expectations

J(π) =

K∑
k=1

θkφ
π
k .

2.2 Apprenticeship learning

The aim of apprenticeship learning is to find a policy π that is nearly as good as
a policy πE demonstrated by a human expert, i.e., J(π) ≥ J(πE)− ε. However,
the expected returns of π and πE cannot be directly compared, unless a reward
function is provided. As a solution to this problem, Ng and Russell [14] proposed
to first learn a reward function, assuming that the expert is optimal, and then
use it to recover the expert’s generalized policy.

However, the problem of learning a reward function given an optimal pol-
icy is ill-posed [2]. In fact, a large class of reward functions may lead to the
same optimal policy. Most of the apprenticeship learning literature has focused
on solving this particular problem. Examples of the proposed solutions include
incorporating prior information on the reward function, minimizing the margin
‖J(π)− J(πE)‖, or maximizing the entropy of the distribution on state-actions
under a learned stochastic policy [7]. In this work, we will use the maximum
entropy regularization.

The principle of maximum entropy states that the simplest policy that best
represents the provided examples is the one with the highest entropy, subject
to the constraint of matching the expected return of the demonstrated actions.
This latter constraint can be satisfied by ensuring that the feature counts of the
learned policy match with those of the demonstration,

∀k ∈ {1, . . . ,K} : E[

∞∑
t=0

γtφk(st, at)|µ0, π, T] = φ̂k (1)

where φ̂k denotes the empirical expectation of feature k calculated from the
demonstration. The MaxEnt IRL approach [7] consists of finding the parameters
θ of a policy π that maximizes the entropy of the distribution on the state-action
trajectories subject to constraint (1). Solving this problem leads to maximizing
the likelihood of the demonstrated trajectories under an exponential distribution
of the policies.

2.3 Markov Random Fields

A Markov Random Field (MRF) is a graphical model used for representing joint
probability distributions. The MRF defines a probability distribution over N
discrete variables Y = {y1, . . . , yn}. Each variable corresponds to the label of a
node in a graph (V, E), where V is a set of nodes and E is a set of edges. Each
node xi is assigned to a label yi from a set L of possible labels. Therefore, the
MRF defines a probability distribution over LN .

We focus on a particular tractable class of MRFs known as Associative
Markov Network (AMN) [15], where potentials ρ(xi, yi) and ρ(xi, xj) are as-
sociated with each node xi ∈ V labeled by yi, and each edge (xi, xj) ∈ E such
that xi and xj have the same label. The AMN model uses the log-linear func-
tion for representing a potential as a function of the features, i.e. log ρ(xi, yi) =∑
k θkφ(xi, yi) and log ρ(xi, xj) =

∑
k λkψk(xi, xj), where θk ∈ R are node

weights, φk(xi, yi) ∈ R are features of node xi labeled by yi, λk ∈ R are edge
weights, and ψk(xi, xj) ∈ R are features of edge (xi, xj). The joint probability
distribution on the labels (y1, . . . , yn) is given by

P (y1, . . . , yn|x1, . . . , xn) ∝ exp
(∑
xi∈V

∑
k

θkφ(xi, yi) +
∑

(xi,xj)∈E
s.t. yi=yj

∑
k

λkψk(xi, xj)
)
.

3 Structured Apprenticeship Learning

In this section, we present the structured apprenticeship learning problem and
show how it can be solved efficiently.

3.1 Key insight

The classical framework of apprenticeship learning is based on hand-coding the
features φ of the reward and learning the weights θ. In practice, it is often diffi-
cult to find an appropriate set of features that contains necessary and sufficient
information about the reward. Moreover, these features are usually obtained
from empirical data and are subject to measurement errors. On the other hand,
most real-world problems exhibit a certain structure wherein states that are
close together tend to have the same optimal action. This implicit information
about the optimal policy, given by the structure, can be used to partially over-
come the problem of finding an appropriate set of reward features. Intuitively,

a distance can be interpreted as a kernel that measures the similarity between
the approximate values of two states under an optimal policy. In many robotic
applications, such as navigation, this distance is simply the Euclidean or the
geodesic distance.

3.2 Problem statement

Given an appropriate definition of a measure between states, we construct a
k-nearest neighbors graph where the nodes correspond to states and the set of
edges is denoted by E . Structured apprenticeship learning can be formulated as
the problem of finding a distribution P on deterministic policies, denoted by
π, that has the highest possible entropy while matching the expected value of
each state-action feature φk with the one calculated from the demonstration,
φ̂k. Moreover, a set of edge features ψk is defined over edges in E . Edge features
ψk(si, sj) take a zero value when π(si) 6= π(sj). The distribution P should also
match the expected value of each edge feature ψk with the one calculated from
the demonstration, ψ̂k. Thus, this problem can be defined as

max
P,µπ

(
−

∑
π∈A|S|

P (π) logP (π)
)
, (2)

subject to ∑
π∈A|S|

P (π) = 1,

∀φk :
∑

π∈A|S|

P (π)
∑
s∈S

µπ(s)φk(s, π(s)) = φ̂k,

∀ψk :
∑

(si,sj)∈E

ψk(si, sj)
∑

π,π(si)=π(sj)

P (π) = ψ̂k,

where µπ(s) is the visitation frequency of state s,

∀π, s : µπ(s) = µ0(s) + γ
∑
s′

T (s, π(s), s′)µπ(s′).

The state-action features φk correspond to the basis functions of the reward
function. The edge features ψk can be interpreted as the basis functions of a
reward given for choosing the same actions for adjacent states. For instance,
ψk(si, sj) can be the inverted distance between states si and sj .

Another interesting example is when ψk(si, sj) = 1,∀(si, sj) ∈ E , in which
case the last constraint in Problem 2 corresponds to forcing the probability of
the policies that choose the same action in adjacent states to be equal to the
empirical probability ψ̂k. In this manner, the robot learns a policy that also
imitates the structure of the human’s policy. If the provided structure is not
relevant to the task, then ψ̂k will be low. Consequently, the learned policy will
not be forced to have a similar structure.

3.3 Proposed solution

The Lagrangian of this problem is given by

L(P, η, θ, λ) = −
∑
π∈π|S|

P (π) logP (π) + η
(∑
π∈A|S|

P (π)− 1
)

+
∑
k

θk

(∑
π∈A|S|

P (π)
∑
s∈S

µπ(s)φk(s, π(s))− φ̂k
)

+
∑
k

λk

(∑
π,π(si)=π(sj)

P (π)
∑

(si,sj)∈E

ψk(si, sj)− ψ̂k
)
.

Therefore

∂P (π)L(P, η, θ, λ) =
∑
s

µπ(s)
∑
k

θkφk(s, π(s)) +
∑

(si,sj)∈E
s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)

− logP (π) + η + 1.

The optimal solution satisfies ∂P (π)L(P, η, θ, λ) = 0, then

logP (π) =
∑
s

µπ(s)
∑
k

θkφk(s, π(s)) +
∑

(si,sj)∈E
s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)− logZ(θ, λ),

(3)

where Z(θ, λ) is a partition function. Therefore

P (π) ∝ exp
(∑

s

µπ(s)
∑
k

θkφk(s, π(s)) +
∑

(si,sj)∈E
s.t. π(si)=π(sj)

∑
k

λkψk(si, sj)
)
. (4)

3.4 Relation to other methods

The probability distribution given by Equation 4 is a Markov Random Field, as
illustrated in Figure 1. The probability of choosing action a in a given state s
depends on the expected return of (s, a) and the actions chosen in neighboring
states. There is a clear similarity between the distribution of policies in struc-
tured apprenticeship learning and the distribution of joint labels in Associative
Markov Networks (AMN) [16] in particular. In fact, the proposed framework
generalizes AMN to sequential decision making problems. States are the input
points and actions are the labels, the labeling cost is given by the reward. The
label distribution in AMN can be derived from Equation 4 by setting γ = 0,
then µπ becomes equal to µ0, the initial state distribution, which is a constant
factor that can be included in the features φk. Also, the MaxEnt method [7] can
be derived from Equation 4 by setting λ = 0. Note that Ziebart et al. [7] use a

|E| = 0 |E| 6= 0
γ = 0 Logistic regression AMN [16]
γ 6= 0 MaxEnt IRL [7] Structured Apprenticeship Learning

Table 1. Relation between Structured Apprenticeship Learning and other methods.

s0

s1

s2
s3

s4

s5
s6

s7

s8

s0

s1

s2
s3

s4

s5
s6

s7

s8

s0

s1

s2
s3

s4

s5
s6

s7

s8

s0

s1

s2
s3

s4

s5
s6

s7

s8

s0

s1

s2
s3

s4

s5
s6

s7

s8

t = 0 t = 1 t = 2 . . .

Fig. 1. Structured Markov Decision Process

distribution on paths instead of policies. The following table shows the relation
between structured apprenticeship learning and other methods.

Finally, we should mention that the concept of using structured output pre-
diction for learning by demonstration was also considered in [17]. Although,
the approach of [17] consists in classifying robot trajectories using conditional
random fields in a supervised learning fashion, without considering a reward
function and planning the trajectories.

3.5 Learning procedure

We provide a solution for finding the reward parameters θ and the structure
parameters λ that maximize the likelihood of an expert policy πE demonstrated
in a domain that can be different from the testing domain. The demonstrations
are given by state-action trajectories, and the empirical feature averages φ̂k and
ψ̂k are calculated from these trajectories. We denote the set of states that appear
in the demonstrations by SE , and the corresponding set of edges by EE .

From the Representer Theorem [18], we know that the parameters θ and λ
that maximize logP (π) (Equation 3) are given by

θk =
∑
s∈SE

αsφk(s, πE(s)),

λk =
∑

(si,sj)∈EE

s.t. πE(si)=π
E(sj)

βsi,sjψk(si, sj),

where αs, βsi,sj ∈ R. Therefore, the log-probability of a deterministic policy π
defined on an arbitrary structured MDP (S, E ,A, T, µ0, γ) is given by

logP (π) = Rβ(E , π)︸ ︷︷ ︸
structure reward

+
∑
s

µπ(s)Rα(s, π(s))︸ ︷︷ ︸
expected return

− logZ(α, β), (5)

Rα(s, a)
def
=

∑
s′∈SE

αs′k(〈s, a〉, 〈s′, πE(s′)〉),

Rβ(E , π)
def
=

∑
(si,sj)∈E
π(si)=π(sj)

∑
(s′i,s

′
j)∈E

E

πE(s′i)=π
E(s′j)

βs′i,s′jke(〈si, sj〉, 〈s
′
i, s
′
j〉),

where k and ke are kernel functions used for measuring similarities between
state-action couples and between edges respectively, they are defined as

k(〈s, a〉, 〈s′, a′〉) =
∑
k

φk(s, a)φk(s′, a′),

ke(〈si, sj〉, 〈s′i, s′j〉) =
∑
k

ψk(si, sj)ψk(s′i, s
′
j).

The partition function Z(α, β) is given by

Z(α, β) =
∑

π∈A|S|

exp
(
Rβ(E , π) +

∑
s

µπ(s)Rα(s, π(s))
)
. (6)

In the learning phase, Equation 5 is used for finding parameters α and β that
maximize the likelihood of the expert’s policy πE . Since this likelihood function
is concave, the optimal parameters α and β can be found by using standard
optimization methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method. A key drawback of this approach is the computational cost of calculating
the partition function Z(α, β) at each step of the optimization algorithm, which
is O(|A||S||S|3), this corresponds to the cost of calculating the values of all the
deterministic policies using value iteration for instance.

In practice, this problem can be addressed by using several possible tricks.
First, we reuse the values calculated for a given policy π as the initial values of
all the policies that differ from π in one state only, the values of these policies
are found after a few iterations. Second, we may be interested in finding a prob-
ability distribution on a restricted set of eligible policies, instead of all possible
policies. The learned reward function will then discriminate the expert’s policy
πE against other alternative candidates. For example, we can consider all the
policies that differ from πE by only one action, or the optimal policies given
a sequence of hypothesized reward functions, as in Maximum Margin Markov
Networks [16]. Finally, we can decompose the state space into a set of weakly
connected components C = {Si ⊂ S}, and separately calculate the partition
function of each component, which reduces the computational complexity to
O(
∑
Si∈C |A|

|Si||Si|3). This procedure is given in Algorithm 1.

Input: A structured MDP\R (S, E ,A, T, µ0, γ) ;
Let C0 be the set of weakly connected components in the graph defined by the
states and the edges in E ;
t← 0;
repeat

t← t+ 1 ; Ct ← Ct−1;
foreach Si ∈ Ct, s ∈ Si, a ∈ A,Sj ∈ Ct, s′ ∈ Sj do

if T (s, a, s′) 6= 0 then
Sk = Si ∪ Sj ; Ct ← Ct ∪ {Sk} ;

end

end

until Ct = Ct−1;
Output: A set of weakly connected components C;

Algorithm 1: Decomposing the state space into weakly connected com-
ponents.

3.6 Finding policies

For a finite horizon H, an optimal policy π can be non-stationary, i.e. π0:H =
(π0, π1, . . . , πH). Moreover, if the initial state distribution µ0 is unknown, then
Problem 2 should be stated for every initial state and time-step. Assuming that
the reward and structure parameters α and β are stationary (they do not depend
on the starting state or time), the solution is given by the conditional probability
distribution

P (πt|πt+1:H) ∝ exp
(
Rβ(E , πt) +

∑
s

V πt:Hα (s)
)
,

V πt:Hα (s) = Rα(s, πt(s)) + γ
∑
s′

T (s, πt(s), s
′)V πt+1:H

α (s′).

Algorithm 2 describes a dynamic programming procedure for finding a policy
π∗0:H = (π∗0 , π

∗
1 , . . . , π

∗
H) that satisfies

∀t ∈ [0, H] : π∗t = argmax
πt∈A|S|

P (πt|π∗t+1:H).

The planning problem is reduced to a sequence of inference problems in Markov
fields. The inference problem itself also can be efficiently solved using techniques
such as graph min-cut [19], α-expansions and linear programming relaxation [15].
We adopt the α-expansions technique. For more details, we refer the reader to
Taskar (2004) [16].

4 Experiments

In this section, we present experiments on learning to navigate in gridworlds
with noisy reward features, and learning to grasp unknown objects. We compare

Input: A structured MDP (S, E ,A, T, γ) with reward parameters α and
structure parameters β, a planning horizon H;

∀s ∈ S, ∀a ∈ A : QH+1
α (s, a) = 0;

for t = H : 0 do
∀s ∈ S, ∀a ∈ A : Qtα(s, a) = Rα(s, a) + γ

∑
s′ T (s, a, s′)Qt+1

α (s′, π∗t+1(s′));
Use an inference algorithm in the MRF defined on the graph (S, E) to label
states with actions. The potential of the nodes is given by Qα and the
potential of the edges is given by Rβ ;
Denote by π∗t the policy returned by the inference algorithm;

end
Output: A non-stationary policy π∗ = (π∗0 , π

∗
1 , . . . , π

∗
H);

Algorithm 2: Reducing planning in structured MDP to inference in MRFs.

Structured Apprenticeship Learning (SAL) with MaxEnt IRL [7]. Note that
Ziebart et al. [7] used a distribution on trajectories while we use distributions
on policies.

4.1 Gridworlds

We consider 10× 25 gridworlds. A state corresponds to the location of a robot,
which has four actions for moving in one of the four directions of the compass.
The actions are stochastic, the robot is randomly moved to one of the four
adjacent states with probability 5%. There are two reward features, φ1 and φ2.
Feature φ1 takes value 1 in the goal states and 0 elsewhere. Feature φ2 indicates
bad regions that should be avoided (big obstacles, large holes, slippery floors,
etc. . .). The true reward function is given by R(s, a) = φ1(s)− 20φ2(s).

Based on the assumption that bad states tend to be regrouped in large re-
gions, an optimal policy is expected to select the same action for most of the
time, and occasionally turn left or right to avoid an obstacle. Therefore, we use
the Manhattan distance on the grid as a similarity measure between states, and
consider the immediate neighbors as adjacent states in the graph used by SAL.
We use a constant edge feature, set to 1. The parameters of MaxEnt IRL and
SAL are learned by maximizing the likelihood of the policy shown in Figure 2
(a) using the BFGS method. In the learning process, we restrict the policy dis-
tribution to the set of policies that differ from the demonstration in at most one
state. This was sufficient for learning fairly accurate reward weights, (1.2,−18.0)
for SAL and (1.2,−20.7) for MaxEnt, while reducing the learning time to 173
seconds for SAL and only 4 seconds for MaxEnt. The learned edge weight for
SAL is λ = 0.28.

Tests were performed in two gridworlds, shown in Figures 2 (b,c,d). In each
gridworld, there are two large regions characterized by φ2 set to 1. The remaining
states have φ2 set to 0. Randomly selected states have been noised, i.e. their
values of φ2 were altered to values uniformly sampled from the interval [0, 0.2].
We used the α-expansions algorithm for inference in SAL. The average planning
times were 0.58 and 1.7 seconds for SAL, and 0.4 and 1.05 seconds for MaxEnt.

(a) Training with optimal policy (b) Testing with SAL

(c) Testing with MaxEnt IRL (d) Testing with SAL

 6.5

 7

 7.5

 8

 8.5

 9

0 10 20 30 40 50

Average reward

Structured Apprenticeship Learning
Maximum Entropy

(e) First domain results

 0

 2

 4

 6

 8

 10

0 10 20 30 40 50

Average reward

Structured Apprenticeship Learning
Maximum Entropy

(f) Second domain results

Fig. 2. Experiments in gridworlds. Blue indicates a low value of a feature associated
with negative reward, and red indicates a higher value of that feature. In the testing
domains, a white noise is added to the negative-weighted feature of randomly chosen
states. Subfigures (e) and (f) show the average rewards of MaxEnt and SAL as a
function of the percentage of noisy states.

Figures 2 (e,f) show the average actual rewards of SAL and MaxEnt policies
as a function of the percentage of states that have been noised. The results are
averaged over 105 trials of length 50 with the discount factor γ = 1. Notice that
with low levels of noise, MaxEnt slightly outperforms SAL. This is due to the
fact that the SAL policy prefers to choose a similar action for adjacent states,
even when sometimes a different action is optimal. For the same reason, SAL
significantly outperforms MaxEnt in high levels of noise, where the robot with
MaxEnt policy spends most of its time trying to avoid most of the noisy states,
as shown in Figure 2 (c).

This experiment shows that SAL can improve over MaxEnt IRL when the
reward features are noisy. However, when the noise is too small or absent, the
performance of SAL can be lower than that of MaxEnt IRL. This is due to

the bias introduced by SAL, which favors smooth policies. Nevertheless, SAL is
intended to be used only when the noise level is significant.

4.2 Grasping unknown objects

From a high-level point of view, grasping an object can be seen as an MDP with
three steps: reaching, preshaping, and grasping (Figure 3). At any step, the robot
can either proceed to the next step or restart from the beginning and get a reward
of 0. The robot always starts at t = 0 from the same initial state s0, the set of
actions corresponds to the set of points on the surface of the object, assuming
that the approach direction is always given by the surface normal vector. At
t = 1, the state is given by a surface point and an approach direction, the set
of actions correspond to the set of all possible hand orientations. At t = 2, the
state is given by a surface point, an approach direction and a hand orientation.
There are two possible last actions, closing the fingers or restarting.

t = 0
Action : reaching

t = 1
Action : preshaping

t = 2
Action : grasping

↘
. . . ←

←↑ . . . ←↙ . . . ←↖

. . .
↓

Fig. 3. Grasping as a Markov Decision Process.

In this experiment, we are interested in learning to grasp objects from their
handles. The reward of each step depends on the current state. There is no
reward at t = 0. The reward R1 defined at t = 1 is a function of the first three
eigenvalues of the scatter matrix defined by the 3D coordinates of the points
inside a small ball centered on the selected point. These features indicate if a
point is on a handle. The reward R2, defined at t = 2, is a function of collision
features. We simulate the trajectories of 10 equidistant points on each finger of a
Barrett robot hand (a three-fingered gripper). The collision features are binary
variables indicating whether or not there will be a collision with the object,
during the grasping, for each one of the specified finger points.

Based on the assumption that points that are close to each other should have
the same action (i.e. same approach direction and hand orientation), the struc-
ture of this MDP is given by the k-nearest neighbors graph, using the Euclidean
distance and k = 6 in the state space of positions (or surface points), and the
angular distance, with k = 2 in the discretized state space of hand orientations.
We use a quadratic kernel for learning R1, and the Hamming distance between
the feature vectors as a kernel for learning R2. We also use a single constant
feature for all the edges.

R
eg

re
ss

io
n

A
M

N
M

a
x
E

n
t

IR
L

S
A

L

Table 2. Learned Q-values at t = 0. Each point on an object corresponds to an action.
Blue indicates low values and red indicates high values. The black arrow indicates the
approach direction in the optimal policy according to the learned reward function.

We used one object for training and provided six trajectories leading to a
successful grasp from its handle. For testing, we compared SAL with MaxEnt
IRL, AMN and Logistic Regression, which is equivalent to AMN without the
graph structure. For AMN and Logistic Regression, only the reward R1 at time-
step 1 is learned, since these are classification methods and do not consider
subsequent rewards.

Table 2 shows the Q-values at t = 0 and the approach directions at optimal
grasping points given the reward functions learned by different algorithms. No-
tice how SAL improves over the other methods by generally giving high values to
handle points only. The values of the other points are zeros because the optimal
action at these points is to restart rather than to grasp. The confusion in the
other methods comes from noise features and self-occlusions. Notice also that
SAL improves over AMN by considering the reward at t = 2 while making a
decision at t = 1. Figure 4 shows the percentage of successful grasps using the
objects in Table 2. A grasp is labeled successful if it is located on a handle and
the hand orientation is orthogonal to the handle and the approach direction.

Note that Ratliff [20] solved a similar grasp prediction problem by using a
structured output prediction technique. The experimental setup used in [20] is
different from ours since it contained complete 3D models of the objects instead
of point clouds. We compared SAL only with MaxEnt IRL, which is a special
case of SAL, in order to illustrate the advantage of using MRF. The approach
of Ratliff [20] for grasping can be extended in a similar way to handle sequential
decision-making. In fact, structured apprenticeship learning with MRFs is one

 0

 20

 40

 60

 80

 100

Regression AMN MaxEnt IRL SAL

Percentage of successful grasps

Fig. 4. Percentage of grasps labeled as successful.

way of using structured prediction in MDPs, one can also use other techniques
such as Max-Margin Markov Networks [16].

We also compared with the classification methods used in [13] (AMN and
logistic regression) in order to show the advantage of taking future rewards into
account in grasping. In fact, AMN and logistic regression use only the reward
function at the first time-step for selecting the grasping point, the approach
direction is found by using a heuristic. Table 2 clearly shows that structured
apprenticeship learning improves over AMN and logistic regression. In fact, the
dynamic programming procedure used in SAL (Algorithm 2) backpropagates the
cost related to the collisions of the fingers with the object to the first time-step.
Therefore, most of the points with a high value are located on handles.

5 Conclusion

Robotic tasks, such as grasping objects, are often difficult to solve by using man-
ual programming. A solution to this problem, known as apprenticeship learning,
consists of providing the robot with a demonstration of an optimal policy for
solving the task. The robot learns a reward function that explains the demon-
stration and uses it for generalization.

In this paper, we showed that the reward function alone is not always suf-
ficient for properly explaining a behavior when some features are noisy, or are
poorly specified. To solve this problem, we presented a new technique that we
called Structured Apprenticeship Learning, and which is inspired by Markov
fields. Experiments on navigation and grasping tasks confirmed that structured
apprenticeship learning improves over unstructured methods when the features
are noisy.

However, our approach suffers from a higher computational complexity com-
pared to standard MDP algorithms. This problem will be investigated in a future
work by using well-known approximate inference techniques in graphical models.

References

1. Schaal, S.: Is Imitation Learning the Route to Humanoid Robots? Trends in
Cognitive Sciences 3(6) (1999) 233–242

2. Abbeel, P., Ng, A.Y.: Apprenticeship Learning via Inverse Reinforcement Learning.
In: Proceedings of the Twenty-first International Conference on Machine Learning
(ICML’04). (2004) 1–8

3. Ratliff, N., Bagnell, J., Zinkevich, M.: Maximum Margin Planning. In: Proceedings
of the Twenty-third International Conference on Machine Learning (ICML’06).
(2006) 729–736

4. Ramachandran, D., Amir, E.: Bayesian Inverse Reinforcement Learning. In: Pro-
ceedings of The twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07). (2007) 2586–2591

5. Syed, U., Schapire, R.: A Game-Theoretic Approach to Apprenticeship Learning.
In: Advances in Neural Information Processing Systems 20 (NIPS’08). (2008) 1449–
1456

6. Syed, U., Bowling, M., Schapire, R.E.: Apprenticeship Learning using Linear Pro-
gramming. In: Proceedings of the Twenty-fifth International Conference on Ma-
chine Learning (ICML’08). (2008) 1032–1039

7. Ziebart, B., Maas, A., Bagnell, A., Dey, A.: Maximum Entropy Inverse Rein-
forcement Learning. In: Proceedings of The Twenty-third AAAI Conference on
Artificial Intelligence (AAAI’08). (2008) 1433–1438

8. Ziebart, B., Bagnell, A., Dey, A.: Modeling Interaction via the Principle of Max-
imum Causal Entropy. In: Proceedings of the Twenty-seventh International Con-
ference on Machine Learning (ICML’10). (2010) 1255–1262

9. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng,
A.: Discriminative learning of Markov random fields for segmentation of 3d scan
data. In: Proceedings of the Conference on Computer Vision and Pattern Recog-
nition (CVPR’05). (2005) 169–176

10. Munoz, D., Vandapel, N., Hebert, M.: Onboard contextual classification of 3-D
point clouds with learned high-order Markov random fields. In: Proceedings of
the 2009 IEEE international conference on Robotics and Automation (ICRA’09).
(2009)

11. Kohli, P., Kumar, P., Torr, P.: P3 and beyond: Solving energies with higher or-
der cliques. In: IEEE International Conference on Computer Vision and Pattern
Recognition (ICCVPR’07). (2007)

12. Ratliff, N., Bagnell, D., Zinkevich, M.: Online subgradient methods for structured
prediction. In: In Eleventh International Conference on Artificial Intelligence and
Statistics (AISTATS’07). (2007)

13. Boularias, A., Kroemer, O., Peters, J.: Learning Robot Grasping from 3-D Images
with Markov Random Fields. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’11). (2011)

14. Ng, A., Russell, S.: Algorithms for Inverse Reinforcement Learning. In: Proceed-
ings of the Seventeenth International Conference on Machine Learning (ICML’00).
(2000) 663–670

15. Taskar, B., Chatalbashev, V., Koller, D.: Learning associative markov networks.
In: Proceedings of the Twenty-First International Conference on Machine Learning
(ICML’04). (2004)

16. Taskar, B.: Learning Structured Prediction Models: A Large Margin Approach.
PhD thesis, Stanford University, CA (2004)

17. Vakanski, A., Janabi-Sharifi, F., Mantegh, I., Irish, A.: Trajectory learning based
on conditional random fields for robot programming by demonstration. In: Pro-
ceedings of the IASTED International Conference on Robotics and Applications
(RA’2010). (2010)

18. Schölkopf, B., Herbrich, R., Smola, A.: A Generalized Representer Theorem .
Computational Learning Theory 2111 (2001) 416–426

19. Boykov, Y., Veksler, O., Zabih, R.: Fast Approximate Energy Minimization via
Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23
(1999) 2001

20. Ratliff, N.: Learning to Search: Structured Prediction Techniques for Imitation
Learning. PhD thesis, Carnegie Mellon University (2009)

